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Abstract

Using the new version of the quasi-classical parameterization based on the screened Coulomb-like atomic potentials the band

structure and the unit cell total energy are obtained for boron nitride cubic crystal (c � BN). The calculated density of electron states

of the upper valence and lower conduction bands reveals that c � BN is an insulator with band gap of Eg ¼ 7:1 eV: The quasi-

classical estimation of lattice constant is found to be a ¼ 3:588 Å.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Boron nitride with the general formula BN exists in
the form of diatomic molecule, fullerene-like nanopar-
ticles and some crystalline modifications. Among them
the dense cubic zinc-blende phase (c � BN) is of special
scientific and technological interest. The present work is
aimed to establish without ambiguity the c � BN

electronic structure’s main features as such kind
theoretical investigation is the indispensable step on
the knowledge of its properties making this material
useful for applications.

The paper is organized as follows. At first we review
the quasi-classical approach used. Then results of
constituent atoms parameters, c � BN density of elec-
tron states, and its lattice constant calculations are
presented in comparison with earlier data. Finally, brief
conclusions are given concerning the method accuracy.
2. Quasi-classical approach

The quasi-classical expression for bounded states
energies obtained by Maslov [1] yields [2] that for the
atomic potential the precise and quasi-classical electro-
nic spectra are close to one another. On this basis the
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quasi-classical approach to the calculation of molecular
and crystalline electronic structures has been developed
[3–7]. Its essential content can be described as follows.

The quasi-classical limit means the truncation of
electron state exponential tails in the classically for-
bidden regions. In this case space-averaged orbital
charge density riðrÞ of the ith electron equals zero
outside the classical turning points and a nonzero
constant within the range between them (all relations
are given in atomic units (au)),

riðrÞ ¼ 0 ðror0iÞ;

¼ � 3

4pðr003
i � r03i Þ

ðr0ioror00i Þ;

¼ 0 ðr00i orÞ;

i ¼ 1; 2; 3;y;Z:

Here r denotes the distance from the center of atom, r0i
and r00i are the electron classical turning points radii
(r0ior00i ), and Z is the atomic number. At the ground
state atomic nucleus inner turning point coincides with
the center (its radius r00 ¼ 0) and thus space-averaged
nucleus charge density r0ðrÞ equals

r0ðrÞ ¼ 3Z

4pr
003
0

ðror000Þ;

¼ 0 ðr000orÞ;



00
0 ¼ 2ðZ � 1Þ

Z2 Z2 �
PZ

i¼1 Zi

� �:
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able 1

ucleus and electrons classical turning points radii in atoms B and N

B N

r0i (au) r00i (au) r0i (au) r00i (au)

ucleus 0 0.027585 0 0.009446

s 0 0.509802 0 0.357724

s 0 4.021346 0 2.909074

p 0.744122 4.337060 0.549803 3.204489
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where r000 is the nucleus outer turning point radius.
Consequently full atomic charge density rðrÞ is ex-
pressed by the step-like radial function,

rðrÞ ¼ rk ðRk�1oroRkÞ k ¼ 1; 2; 3;y; q:

rk and Rk denote known constants that depend on the
electrons and nucleus classical turning points radii
(R0 ¼ 0;R0oR1oR2o?oRq;RqoN), and q is the
number of charge spherical layers in atom (qp2Z).

Using the Poisson equation the radial dependence of
the full atomic potential jðrÞ also can be approximated
by the step-like function if substituted by the space-
averaged values jk inside each of the Rk�1oroRk

regions,

jðrÞ ¼ jk ðRk�1oroRkÞ k ¼ 1; 2; 3;y; q;

jk ¼ 3AkðR2
k � R2

k�1Þ
2ðR3

k � R3
k�1Þ

þ 3BkðR5
k � R5

k�1Þ
5ðR3

k � R3
k�1Þ

þ Ck;

Ak ¼
Xk�1

i¼1

4priðR3
i � R3

i�1Þ
3

� 4prkR3
k�1

3
;

Bk ¼ � 2prk

3
;

Ck ¼
Xq

i¼kþ1

2priðR2
i � R2

i�1Þ þ 2prkR2
k:

In quasi-classical limit in the region r4Rq charge
density and potential vanish identically (rðrÞ � 0 and
jðrÞ � 0). Thus finite parameter Rq is the quasi-classical
atomic radius.

In the case of expressing crystalline (molecular)
potential by the superposition of the step-like atomic
potentials the crystalline (molecular) electronic structure
is determined by solving the secular equation in which
matrix elements are the linear combinations of the
overlapping volumes for every possible triad of spheres
with radii Rk centered at the atomic sites. These matrix
elements are calculated using the universal function V ¼
Vðr1; r2; r3; d12; d13; d23Þ; which expresses the dependence
of the three spheres’ intersection region volume V upon
their radii r1; r2; r3 and inter-central distances
d12; d13; d23: The explicit solution of this geometrical
problem has been obtained in Ref. [8]: V is the
continuous piecewise analytical combination of alge-
braic and inverse trigonometric functions.

The quasi-classical static and vibration energies of
crystal (molecule) are calculated using another universal
function W ¼ Wðr1; r2; d12Þ and its partial derivative
qWðr1; r2; d12Þ=qd12: W expresses the dependence of
two spheres’ intersection region volume upon their radii
r1; r2 and inter-central distance d12: W and qW=qd12

are the continuous piecewise algebraic functions (see
Ref. [8]).
The elaborated quasi-classical method was applied to
some boron compounds. Namely electron energy
spectra and vibration frequencies of B2; BC; BN and
BO diatomic molecules, and also the density of states of
hexagonal boron nitride (h � BN) layered crystal were
obtained [9–11]. For this purpose the screening factor of
the potential jiðrÞ affecting the given ith electron in
constituent atom was approximated by the radial
polynomial.
3. Parameters of constituent atoms

In the present work we investigate cubic phase of
boron nitride (c � BN) using the new version of the
quasi-classical parameterization based on the Coulomb-
like atomic potentials,

jiðrÞ ¼ Zi=r:

The values of effective charge numbers of the screened
nucleus Zi can be obtained by fitting quasi-clas-
sical energetic levels to the Hartree-Fock ones Ei (see
Ref. [12]),

Zi ¼ ni

ffiffiffiffiffiffiffiffiffiffiffi
�2Ei

p
;

where ni is the ith electron principal quantum number.
The Coulomb-like potential is less detailed, but after its
substitution into the quasi-classical quantization rule
further simplification is not needed and we get exact
formulas for the electron classical turning point radii,

r0i ¼
ni �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

i � liðli þ 1Þ
p

ffiffiffiffiffiffiffiffiffiffiffi
�2Ei

p ;

r00i ¼ ni þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

i � liðli þ 1Þ
p

ffiffiffiffiffiffiffiffiffiffiffi
�2Ei

p :

Here li is the ith electron orbital quantum number.
In this case the electron cloud effective potential j0ðrÞ

affecting the nucleus is Coulomb-like as well,

j0ðrÞ ¼ � 1

Z � 1
Z2 �

XZ

i¼1

Zi

 !
=r

and consequently the nucleus classical turning point
radius equals
r

T

N

N

1

2

2
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Fig. 1. Quasi-classically calculated density of electron states for c �
BN crystal.

Table 2

Quasi-classical parameters of the charge density and potential

distributions in atoms B and N

k B N

Rk (au) rk (au) jk (au) Rk (au) rk (au) jk (au)

1 0.027585 56865.14 210.5468 0.009446 1982589 878.4581

2 0.509802 �3.61095 8.882329 0.357724 �10.4497 20.22523

3 0.744122 �0.00734 3.652920 0.549803 �0.01939 8.464698

4 4.021346 �0.01028 0.206072 2.909074 �0.04127 0.509668

5 4.337060 �0.00294 0.000614 3.204489 �0.02188 0.003993
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Using the stated relations we have calculated the
requested quasi-classical parameters of the constituent
atoms B and N: The values are listed in Tables 1 and 2.
Table 3

c � BN band gap

Eg ðeVÞ Method Reference

8.0 Reflection spectra [21]

7.2 Semi-empirical APW [22]

6.070.5 X-ray K-emission and quantum yield

spectra

[23]

6.470.5 Ultraviolet absorption spectra [24]

8.7 LCAO-Xa [25]

8.0 Empirical PP [26]

11.3 Exact-exchange HF [27]

9.16 Variational APW without ionicity [17]

8.60 Variational APW with fractional

ionicity

[17]

7.0 Orthogonalized LCAO [18]

4.4 Full-potential linear APW [19]

4.20 KS equations using non-local PP [28,29]

5.18 LDA orthogonalized LCAO [20]

6.272 Optical-absorption edge [30]

6.2 Soft-X-ray and total photon yield

spectra

[31]

4.4 LDA with uncorrected PP [32]

6.1 LDA with self-interaction and

relaxation-corrected PP

[32]

6.0 Optical band gap [33]

6.1�6.4 Linear MTO method with X-ray

emission and absorption spectra

[34]

7.1 Quasi-classical approximation This work
4. Density of electron states

On the ground of above-described quasi-classical
approach (choosing the B and N atoms piecewise-
constant valence orbitals as basis set) the solutions for
the secular equation have been obtained. Quasi-classi-
cally calculated density of electron states (DOS) for the
c � BN with respect to the Fermi level is presented in
Fig. 1. It reveals that c � BN is an insulator with band
gap of Eg ¼ 7:1 eV:

In outline it is similar to the DOS calculated for this
material earlier using OPW [13–15], tight-binding [16],
variational APW [17], orthogonalized LCAO [18], full-
potential linear APW [19], and LDA orthogonalized
LCAO [20] methods. However, the available experi-
mental and theoretical data do not agree with each other
in the value of the band gap. One can recognize this
inconsistency from Table 3 where our result is reported
in comparison to other selected works. Some of these
theoretical methods underestimate the band gap of c �
BN (Ego6 eV) whereas others overestimate its value
(Eg48 eV). Nevertheless both of discrepancies may be
attributed to the uncertainties in the knowledge of the
crystalline potential. Namely when the self-interaction-
corrected potential is employed Eg increases [33] and
when the appropriate bond ionicity is included Eg

decreases [17]. It seems that value of band gap for c �
BN lies over range from 6 to 8 eV which does not
contradict the experimental data. The quasi-classically
calculated band gap falls in same energy region.
5. Lattice constant

The quasi-classically calculated total energy of c �
BN crystal unit cell E plotted as function of lattice
constant a is shown in Fig. 2. Before us the total and
cohesive energies of boron nitride in the cubic structure
versus lattice constant or unit cell volume were
determined applying LDA nonlocal PP [28], LDA
orthogonalized LCAO [20], linear MTO [35], and
LDA plane-wave PP [36,37] methods. Our E � a

dependence and all these curves are similar in shape:
parabolic in the vicinity of minimum but with different
slopes far right and far left from this point.

The equilibrium structure of c � BN was obtained by
minimization of such energy functions with respect to
the lattice constant. The results from analyzing the
E � a curves together with other theoretical values of
the parameter a are summarized in Table 4. These
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Fig. 2. Quasi-classically calculated c � BN crystal unit cell energy

versus lattice constant (with respect to the ground state energy).

Table 4

c � BN theoretical lattice constant

a (Å) Method of calculation Reference

3.59 Full-potential linear APW [19]

3.6492 LDA non-local PP [28]

3.625 Linear MTO first basis set [38]

3.618 Linear MTO second basis set [38]

3.62 Linear MTO [35]

3.593 LDA plane-wave PP for static lattice [36]

3.611 LDA plane-wave PP with zero-point

vibration contributions

[36]

3.658 GGA [36]

3.57 LDA uncorrected PP [32]

3.68 LDA self-interaction-corrected PP [32]

3.591 LDA plane-wave PP [37]

3.5870.04 Variational Monte Carlo [39]

3.627 LDA orthogonalized LCAO [20]

3.62 Short-range force-field modeling [40]

3.588 Quasi-classical approximation This work

L. Chkhartishvili / Journal of Solid State Chemistry 177 (2004) 395–399398
theoretical data concerned c � BN lattice constant lie
over the wide range from 3.54 to 3.68 Å. The quasi-
classically calculated lattice constant, a ¼ 3:588 Å, is in
good agreement with the measured value, a ¼ 3:615 Å
[41], with a deviation of B0.7%.

The quasi-classical estimation of zero-point vibration
energy for this lattice constant is found to be
0:33 eV=mol which is exactly the same value that was
obtained [38] from the Debye empirical model and very
close to 0:32 eV=mol evaluated [36] from theoretical
phonon spectra. It should be noted that quasi-classical
lattice constant of c � BN only slightly affected by the
zero-point vibrations.
6. Conclusions

As the quasi-classical atomic radii are the finite
parameters the quasi-classical matrix elements in secular
equation for the crystalline electronic structure and the
quasi-classical energy of crystal contain a finite number
of summands. Thus this approach is free from
ambiguous errors arisen from series termination. Be-
sides the nonzero terms can be calculated analytically
using universal geometrical functions. The results of
present study of c � BN electronic structure show that
the expected accuracy of the quasi-classical determina-
tions of energetic and structural parameters would be
especially good in case of boron compounds.
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